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Abstract

To e/ciently derive bounds for large-scale instances of the capacitated "xed-charge network
design problem, Lagrangian relaxations appear promising. This paper presents the results of
comprehensive experiments aimed at calibrating and comparing bundle and subgradient methods
applied to the optimization of Lagrangian duals arising from two Lagrangian relaxations. This
study substantiates the fact that bundle methods appear superior to subgradient approches because
they converge faster and are more robust relative to di3erent relaxations, problem characteristics,
and selection of the initial parameter values. It also demonstrates that e3ective lower bounds may
be computed e/ciently for large-scale instances of the capacitated "xed-charge network design
problem. Indeed, in a fraction of the time required by a standard simplex approach to solve
the linear programming relaxation, the methods we present attain very high-quality solutions. ?
2001 Elsevier Science B.V. All rights reserved.
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R	esum	e

La relaxation lagrangienne appara:̂t comme une technique prometteuse pour g;en;erer e/cace-
ment des bornes de qualit;e pour des exemplaires de grande taille du probl<eme de conception
de r;eseau avec coût "xe et capacit;e. Cet article pr;esente les r;esultats d’exp;eriences visant <a
comparer les m;ethodes de sous-gradients et de faisceaux, appliqu;ees <a l’optimisation des du-
aux lagrangiens issus de deux relaxations lagrangiennes. Cette ;etude d;emontre que les m;ethodes
de faisceaux semblent sup;erieures aux m;ethodes de sous-gradients puisqu’elles convergent plus
rapidement et sont plus robustes. Cet article montre ;egalement que des bornes inf;erieures de
qualit;e pour des exemplaires de grande taille du probl<eme de conception de r;eseau avec coût
"xe et capacit;e peuvent être calcul;ees de mani<ere e/cace. En e3et, les approches de relaxation
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lagrangienne obtiennent des bornes de tr<es grande qualit;e en une fraction du temps requis par
des m;ethodes de type simplexe.

Mots-cl�e: Probl<eme de conception de r;eseau avec capacit;e et coût "xe; Relaxation lagrangienne;
M;ethodes de sous-gradients; M;ethodes de faisceaux

1. Introduction

Network design models arise in various applications in telecommunications, trans-
portation, logistics and production planning [2,3,16,31,32]. In many of these applica-
tions, the models are characterized as follows: given a network with arc capacities, it is
required to send Kows (which might be fractional) in order to satisfy known demands
between origin-destination pairs. In doing so, one pays a price not only for routing
Kows, but also, in the form of "xed costs, for using arcs. Although deceptively sim-
ple to state, these capacitated 8xed-charge network design problems are notoriously
di/cult. Not only they are NP-hard, but also, when one attempts to formulate and
solve them as mixed-integer programs, several complications emerge. Indeed, because
“simple” linear programming relaxations generally do not provide good approximations
to the mixed-integer programs, one has to derive formulations with very large num-
bers of variables and constraints in order to obtain tight bounds. Therefore, traditional
simplex-based branch-and-bound methods (which do not incorporate cutting plane or
column generation procedures) are likely to solve only the simplest instances.

Lagrangian relaxation approaches o3er an interesting alternative [17,18,26]. Several
Lagrangian relaxations are possible, however, and researchers have shown that many
yield the same theoretical lower bound. Furthermore, initial studies [17,18] have made
clear that the implementation and calibration of Lagrangian-based methods have a sig-
ni"cant impact on their behavior and performance. In these initial studies, the authors
have used the traditional subgradient methods to optimize the Lagrangian duals and
derive lower bounds. Other general techniques in the "eld of nondi3erentiable optimiza-
tion could be used, however; among them, bundle methods [25,29] appear especially
promising. In contrast with subgradient methods, for which the most e/cient variants
[5,9] use subgradients from previous iterations in an aggregated form to avoid zigzag-
ging, bundle approaches keep the subgradients generated so far in a disaggregated form
(the so-called “bundle”) to compute a tentative direction of ascent. A wide choice of
alternatives thus appears available to design and implement Lagrangian-based bounding
procedures for the capacitated "xed-charge network design problem and no experimen-
tal results have been presented yet, at least to our knowledge, to guide this choice. We
aim to address this issue.

The main objective of this paper is therefore to present the results of comprehen-
sive experiments aimed at calibrating and comparing bundle and subgradient methods
applied to the optimization of the Lagrangian duals arising from the most promising
relaxations presented in [17]. Two Lagrangian relaxations are compared: the "rst one,
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called shortest path relaxation, relaxes the so-called “forcing” constraints and yields
a Lagrangian subproblem that decomposes into a collection of shortest path problems;
the second one, called knapsack relaxation, dualizes the Kow conservation constraints,
which allows to solve the Lagrangian subproblem as a collection of continuous knap-
sack problems.

The most signi"cant contribution of this paper is a detailed analysis of the resulting
relaxation methods and their implementations, based on experiments on a large set of
test problems of various characteristics. The study o3ers insights into the behavior of
each particular relaxation method and proposes strategies for their design and imple-
mentation. These experiments also demonstrate that bundle methods show two main
advantages, when compared to subgradient approaches:
• Bundle methods converge faster. The increased complexity of bundle methods (both

in theory and from an implementation viewpoint) is most often compensated by
a faster convergence toward the optimal value of the Lagrangian dual. Indeed, our
experiments show that, with the same computational e3ort (measured by CPU time),
bundle methods generally provide better values than the best subgradient methods.
• Bundle methods are more robust. When e/cient and portable software tools are de-

veloped [12,13], bundle methods require few parameters to adjust. Moreover, even
when initial “bad” parameter settings are allowed, bundle methods still derive a rel-
atively precise estimate of the optimal value of the Lagrangian dual. In contrast,
subgradient methods usually require more parameter adjustments and are very sen-
sitive to them. Indeed, it is not unusual to have a parameter setting for a particular
relaxation that performs very well on some instances and very poorly on others.
Our study also shows that e=ective lower bounds can be computed e>ciently for

large-scale instances of the capacitated "xed-charge network design problem. Indeed,
the Lagrangian duals corresponding to the two relaxations presented in this paper have
the same optimal value, which is also the optimal value of the so-called “strong” linear
programming relaxation [17]. For the instances we tested, the resulting “strong” lower
bound on the optimal value of the mixed-integer program was reported to be within 9%
of optimality on average, for those instances for which a feasible (but not necessarily
optimal) solution could be obtained by a standard simplex-based branch-and-bound
code [8]. This average optimality gap is very reasonable for such large-scale complex
problems, as exempli"ed by the literature on solution methods for related capacitated
network design models (see for example [4,6,30] and the survey [19]). Furthermore,
the Lagrangian-based bounding procedures approximate the “strong” lower bound with
very high accuracy and in a fraction of the time required by a competitive commercial
simplex code to compute it.

The paper is organized as follows. In Section 2, we recall the formulation of the
capacitated "xed-charge network design and then present the Lagrangian relaxations.
A special case of the shortest path relaxation, shown to be very e3ective by our
experiments, is (to our best knowledge) described for the "rst time. Section 3 gives an
overview of the nondi3erentiable optimization methods used in our implementation. In
Section 4, we present and analyze results of experiments on a large set of randomly
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generated problems of various characteristics. In the Conclusion, we summarize our
work and propose extensions.

2. Problem formulation and relaxations

Given a directed graph G = (N; A) and a set of commodities K which represent
demands to satisfy between origin–destination pairs, the objective is to minimize the
sum of arc transportation and design costs, the latter being charged whenever an arc
is used. For each arc (i; j); the transportation cost per unit of commodity k is denoted
ck
ij; while the design cost is denoted fij. Both costs are assumed to be nonnegative.

Let dk ¿ 0 denote the demand to satisfy between origin O(k) and destination D(k) for
each commodity k. On each arc (i; j); there is a capacity uij ¿ 0; and an upper bound
bk
ij = min{dk ; uij} may be imposed on the amount of Kow of commodity k.
To formulate the problem, we introduce continuous Kow variables xk

ij; which reKect
transportation decisions for each arc (i; j) and commodity k; and 0–1 design variables
yij. We also de"ne the sets of outward and inward neighbors of any node i: N+(i) =
{j ∈ N | (i; j) ∈ A} and N−(i) = {j ∈ N | (j; i) ∈ A}; respectively. The model is then
given by

min
∑
k∈K

∑
(i; j)∈A

ck
ijx

k
ij +

∑
(i; j)∈A

fijyij; (1)

∑
j∈N+(i)

xk
ij −

∑
j∈N−(i)

xk
ji =




dk ; i = O(k)
−dk ; i = D(k)
0; i �= O(k); D(k)

∀i ∈ N; k ∈ K; (�k
i ); (2)

∑
k∈K

xk
ij6uijyij ∀(i; j) ∈ A; (�ij); (3)

xk
ij6bk

ijyij ∀(i; j) ∈ A; k ∈ K; (�k
ij); (4)

xk
ij¿0 ∀(i; j) ∈ A; k ∈ K; (5)

06yij61 ∀(i; j) ∈ A; (6)

yij integer ∀(i; j) ∈ A: (7)

The ?ow conservation constraints (2) ensure that demands are satis"ed between each
origin–destination pair and that total incoming Kow equals total outgoing Kow at every
transshipment node. To these Kow constraints, we associate Lagrangian multipliers �;
which are unrestricted in sign. Constraints (3) not only ensure that arc capacities are
respected, but they force the Kow of any commodity to be 0 if the arc is not chosen in
the design. Constraints (4) achieve the same objective and are, therefore, completely
redundant. However, they can signi"cantly improve the lower bounds obtained through
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relaxations, as demonstrated by computational experiments reported in [17] and in
Section 4 of this paper. Constraints (3) and (4) are called weak and strong forcing
constraints, respectively, and nonnegative multipliers � and � are associated to them.

The "rst Lagrangian relaxation, called shortest path (or ?ow) relaxation, is obtained
by dualizing the forcing constraints (3) and (4) [17,18]. The resulting Lagrangian
subproblem is

Z(�; �) = min
∑
k∈K

∑
(i; j)∈A

(ck
ij + �ij + �k

ij)x
k
ij +

∑
(i; j)∈A

(
fij − uij�ij −

∑
k∈K

bk
ij�

k
ij

)
yij

(8)

subject to constraints (2) and (5)–(7). It decomposes into |K | shortest path problems
and a problem, in y variables only, solvable by simple inspection of the cost signs.
Since the Lagrangian subproblem has the integrality property (e.g., its optimal value is
the same whether we relax the integrality constraints (7) or not) [20], the Lagrangian
dual – max�;�¿0 Z(�; �) – has the same optimal value as the strong linear programming
relaxation obtained by dropping the integrality requirements (7).

This observation suggests an interesting alternative approach to compute the same
lower bound which can be seen as a particular case of the shortest path relaxation. The
idea follows from the fact that, assuming design variables are continuous, these may
be eliminated by projecting them over the space of the Kow variables. More precisely,
assume that the integrality constraints (7) are dropped and the strong forcing constraints
(4) are relaxed in a Lagrangian way; then, add the capacity constraints∑

k∈K

xk
ij6uij ∀(i; j) ∈ A: (�ij) (9)

In the resulting formulation, it is easy to see that the y variables can be dropped since
an optimal solution to this subproblem must satisfy

yij =



∑
k∈K

xk
ij=uij if fij(�)¿0;

1 otherwise;
∀(i; j) ∈ A; (10)

where fij(�) = fij −
∑

k∈K bk
ij�

k
ij. Following this projection of the y variables over

the x variables, we can dualize the capacity constraints (9) by using the nonnegative
multipliers �. The resulting subproblem

Z(�; �) = min
∑
k∈K

∑
(i; j)∈A

(ck
ij + �ij + fij(�)+=uij + �k

ij)x
k
ij +

∑
(i; j)∈A

(fij(�)− − uij�ij);

(11)

subject to (2) and (5), where fij(�)+ = max{0; fij(�)} and fij(�)− = min{0; fij(�)};
also decomposes into |K | shortest path problems. This projected shortest path relax-
ation is easily seen to be a special case of the shortest path relaxation (8), obtained
by setting �ij = �ij + fij(�)+=uij ∀(i; j) ∈ A. Our computational results (see Section
4) suggest that this projected variant of the shortest path relaxation is very e3ective,
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as it usually converges faster to the optimal value of the Lagrangian dual than the
“ordinary” shortest path relaxation. Intuitively, this is due to the fact that the projected
variant produces “better” y; and therefore better subgradients to drive the search (see
Section 3).

An interesting special case of the projected shortest path relaxation arises when one
"xes � to 0; which is equivalent to remove the valid inequalities (4) from the formula-
tion. In this case, the Lagrangian subproblem can be interpreted as the relaxation of the
capacity constraints (9) of a multicommodity minimum cost network Kow (MMCF)
problem, where the transportation costs are de"ned as ck

ij + fij=uij ∀(i; j) ∈ A; k ∈ K .
It is easy to see that the resulting Lagrangian dual has the same optimal value as the
weak linear programming relaxation, which is obtained from the problem formulation
by dropping the integrality requirements (7) and the strong forcing constraints (4). Al-
though this weak bound can be computed exactly and e/ciently by a bundle method
based on the relaxation of the capacity constraints (as suggested by our computational
experiments reported in Section 4 and the results presented in [15]), it is probably too
weak to serve as a basis for branch-and-bound methods.

The second Lagrangian relaxation we study, called knapsack relaxation, is based on
dualizing the Kow conservation constraints [17,26]. The Lagrangian subproblem may
be written as

Z(�) = min
∑
k∈K

∑
(i; j)∈A

(ck
ij + �k

i − �k
j )x

k
ij +

∑
(i; j)∈A

fijyij +
∑
k∈K

dk(�k
D(k) − �k

O(k)); (12)

subject to constraints (3)–(7). This subproblem can be easily solved by inspection of
the signs of the costs of the following problem:

Z(�) = min
y∈{0;1}|A|

∑
(i; j)∈A

(fij + gij(�))yij +
∑
k∈K

dk(�k
D(k) − �k

O(k)); (13)

where gij(�); for each (i; j) ∈ A; is the optimal value of the continuous knapsack
problem:

gij(�) = min
∑
k∈K

(ck
ij + �k

i − �k
j )x

k
ij; (14)

∑
k∈K

xk
ij6uij; (15)

06xk
ij6bk

ij ∀k ∈ K: (16)

Since this Lagrangian subproblem has the integrality property, the Lagrangian dual –
max� Z(�) – has the same optimal value as the strong linear programming relaxation.
Therefore, it also gives the same bound as the Lagrangian dual of the shortest path
relaxation, provided one can solve the Lagrangian duals to optimality. Although the
two relaxations are theoretically equivalent (e.g., they provide the same lower bound),
their relative performances, both in terms of computational e/ciency and speed of
convergence, have not been fully characterized yet. But these performances are clearly
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dependent upon the method chosen to optimize the Lagrangian duals. A description of
the methods used in our implementation is the topic of the next section.

3. Nondi�erentiable optimization methods

The Lagrangian duals related to the relaxations presented in the previous section may
be cast in the form of nondi3erentiable optimization problems schematically described
as

max
w∈�

�(!); (17)

where � is a concave nondi3erentiable function, "nite everywhere on �; a set which
represents either the whole real space (of a dimension corresponding to the number
of multipliers) or its nonnegative orthant. For each ! ∈ �; the value of �(!) can be
obtained by solving the Lagrangian subproblem; then, one subgradient g(!) of � in
! can be easily retrieved from the optimal primal solution (x; y) of the subproblem.
For the shortest path relaxation, the subgradient takes the form[∑

k∈K

xk
ij − uijyij ∀(i; j) ∈ A; xk

ij − bk
ijyij ∀(i; j) ∈ A; k ∈ K

]
; (18)

while for the knapsack relaxation, the expression of the subgradient is
 ∑

j∈N+(i)

xk
ij −

∑
j∈N−(i)

xk
ji −




dk ; i = O(k)
−dk ; i = D(k)
0; i �= O(k); D(k)

∀i ∈ N; k ∈ K


 : (19)

Several iterative methods have been designed to solve problem (17) with the sole
help of this kind of information. Among them, we have tested a bundle-based algorithm
and several variants of the subgradient method. All these algorithms start from an initial
estimate U! of the solution and iteratively repeat the following "ve basic steps: (1) select
a tentative ascent direction d; (2) select a stepsize t; (3) evaluate �( U! + td) and the
corresponding subgradient; (4) eventually, move the current point to U!← U! + td; (5)
check some stopping criteria.

Despite sharing the same abstract algorithmic structure, bundle and subgradient meth-
ods are very di3erent under many viewpoints (some of which are highlighted by our
computational experiments, reported in Section 4):
• Bundle approaches are ascent methods, since they only move the current point U!

when a (su/ciently) better point is found, while subgradient methods update the cur-
rent point at every iteration, even if the newly obtained point has a worse (smaller)
value of the function.
• Subgradient methods are (almost) oblivious of the search history, in the sense that,

at any iteration, they only use the current subgradient and the previous direction to
compute the new one, while bundle methods (in principle) retain all the previously
obtained subgradients in a disaggregated form.
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• Most variants of the subgradient methods do not necessarily converge with a “prac-
tical” choice of stepsize [24], hence usually they give no guarantee of reaching the
optimal solution; bundle methods 8nitely converge when maximizing a polyhedral
function, and also give a proof of the ( )-optimality of the obtained solution when
they stop.
• When used to optimize a Lagrangian dual, most variants of the subgradient methods

only convey dual information, while bundle methods provide satisfactory primal
information as well.
• Subgradient methods are rather “unstable”, their performances being highly depen-

dent on the setting of several parameters (whose best setting for a class of instances
may well be very poor for another class, up to the point that the method can “di-
verge”), while the performances of bundle methods are much more stable and depend
on less parameters (which, though, may have a signi"cant impact).
• Subgradient methods are very easy to implement and their computational cost is

almost always dominated by the cost of evaluating �, while bundle methods require
a much more sophisticated implementation, their computational bottleneck in practice
often being the computation of the direction d.
We now substantiate these points by describing in detail how the basic operations

are accomplished within each class of methods.

3.1. Subgradient methods

As already mentioned, subgradient methods move their current point at each itera-
tion: if we let U!i and di denote the current point and the direction at the ith iteration,
respectively, � is calculated at the tentative point !i = U!i + tidi and the current point
is moved to !i( U!i+1 ← !i). Since U!i+1 cannot be guaranteed to be better (in terms of
its � value) than U!i, the best value of � found so far (and maybe the corresponding
!) must be retained; let �i

∗ denote this value.
Early versions of the subgradient algorithm [24,33] used only the subgradient to

compute a direction, that is di=gi=g( U!i). It was quickly realized, however, that taking
into account the direction di−1 of the previous iteration could lead to performance
improvements. The more general formula

di = gi + ! idi−1 (20)

(of which the previous one is the special case for ! i =0) has been usually reported as
being more e3ective for “clever” choices of ! i. The simplest choice, called Crowder
rule [9], used ! i "xed to some value ¡ 1. Another approach used the more sophisti-
cated Camerini–Fratta–Ma>oli rule [5]

! i =
{−#gidi−1=||di−1||2 if gidi−1 ¡ 0;

0 otherwise;
(21)

where # is a parameter to be selected through computational experiments (the authors
indicate that 1.5 usually constitutes a good choice). The rationale for (21) is that a
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proper choice of # in the interval [0; 2] guarantees that di is at least as good a direction
as gi. The need for the hand-tuned parameter # may be overcomed by using the
self-adjusting rule: #=−||gi||||di−1||=gidi−1, which is based on geometrical arguments.
This yields the following modi8ed Camerini–Fratta–Ma>oli rule [5]:

! i =
{ ||gi||=||di−1|| if gidi−1 ¡ 0;

0 otherwise:
(22)

Feasibility issues that may arise when using the subgradient algorithm are tackled by
means of projection. The actual direction is the projection over the active constraints
of the direction obtained by using one of the previous formulae (this is almost costless
for the case of nonnegativity constraints). The tentative point must be projected as
well to ensure its feasibility, since the stepsize is usually selected without taking the
constraints into consideration. A variant of the standard stepsize formula [33], used in
our implementation is

ti = $i( U�
i − �( U!i))=gidi (23)

where $i is an iteration-dependent scaling factor and U�
i

an estimate of the maximum
of �.

But for the selection of the rule for computing di, the most critical issues in sub-
gradient methods come from the adjustment of the parameters in the stepsize formula
(23). The fundamental issues are: (1) how $i is updated; (2) how U�

i
is estimated.

Typically, $i is divided by a constant factor �1 ¿ 1 (such as 2) every time �i
∗ has not

been improved for �2 consecutive iterations. Note that this exponential decrease of $
may theoretically cause the subgradient to converge to a non optimal point: in fact, the
usual convergence theorems [1,25,29] require the overall stepsize ti to converge to zero
slowly enough that the series

∑∞
i=0 ti diverges. In practice, however, the subgradient

always seems to converge “near enough” to an optimal solution, whenever it converges.
A good U�

i
may sometimes be provided, typically when the computation of the

Lagrangian bound is associated with heuristic or enumerative approaches to the original
problem that produce feasible solutions. However, this is not always the case. The usual
way for providing such an estimate is then to multiply �i

∗ by a constant �3 ¿ 0. This is
arguably a coarse method, but more sophisticated ones would call for other parameters
in order to dynamically adjust �3. Furthermore, our experience has shown that providing
a tight bound, when available, may sometimes deteriorate the performances of the
method.

Hence, the choice of the stepsize is inKuenced by at least four parameters: �1; �2; �3

and $0, the initial value of $i. In practice, all these parameters may have an impact, but
the most critical is $0, followed by �2. As shown by our computational experiments, the
setting of $0 usually makes a large part of the di3erence between obtaining good per-
formances and having the method “diverge”, never being able to improve on the initial
estimate. Unfortunately, no settings appear to provide at least reasonable performances
on all problem classes: depending on the particular instance and the other parameters,
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the “good” numerical values for $0 may vary. Thus extensive experimentation appears
to be the only way to guess a reasonable value.

Another possible choice appears when the multipliers are nonnegative. When calcu-
lating the stepsize formula (23), the scalar product digi in the denominator may either
use the original or the projected direction di. In [28], sound theoretical arguments
(based on the notion of conditional subgradients) as well as computational results have
been o3ered supporting the choice of the projected direction. Our results have generally
con"rmed the validity of such a choice, but still computational results were necessary
in order to establish it. This is especially true since the original development in [28]
was limited to the “basic” subgradient method using di = gi, while we extended it to
the more general case of (20). This also suggested the possibility to use the projected
versions of di−1 and gi in (21) and (22), that is for computing the direction, but the
results were generally worse than those of the non-projected variants.

Finally, as far as the stopping criteria are concerned, the theoretical stopping criterion
of the subgradient is that ||gi|| is “small enough”. This is a sound criterion, since "nding
a zero ( -)subgradient at U!i su/ces to prove that U!i is ( )-optimal. In the constrained
case (e.g., with nonnegative multipliers), ||gi|| has to be replaced with the norm of
the projected subgradient. Unfornately, this stopping criterion almost never applies in
practice (it would require that the optimal solution of the Lagrangian subproblem be
feasible for the original problem): hence, an alternative criterion is to stop after �i

∗ has
not been improved for �4 ¿�2 consecutive iterations. In order to avoid stopping “too
early”, �4 must not be chosen “too small”. The result is that, even for “easy” instances,
subgradient methods almost always stop after having performed the maximum number
of iterations.

3.2. Bundle methods

The main idea of bundle methods is to use the information generated previously to
build a model of the function � to be maximized, and use this model to drive the
search for a better point. It makes use of the information transport property [25,29]:
if d is a %-subgradient of � in U! (�(!)6�( U!) + d(! − U!) + % ∀! ∈ �), then d is
also %′-subgradient of � in !′ where

%′ = % + d(!′ − U!)− (�(!′)− �( U!)): (24)

It follows from this property that at each iteration i, one can associate to each previously
generated subgradient gh; h=1; : : : ; i−1, a linearization error �h¿0 such that gh is an
�h-subgradient of � at the current point U!i. Therefore, the polyhedral concave function

�B(!) = min
i∈B
{gi! + �i} (25)

called the cutting plane model of �, is an upper approximation of � − �( U!i) for
each set – or bundle – B⊆{1; : : : ; i − 1}. Using the maximizer of �B as the next trial
point results in the well-known cutting plane algorithm [27], which su3ers, however,
from several drawbacks, in particular: (1) the maximizer of �B is most likely to be
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unde"ned when only few subgradient are known; (2) the algorithm has no locality
property, i.e., it tends to generate iterates that can be very far from the current point
even if the latter is “near” to the optimum.

Bundle methods can be viewed as “stabilized” versions of the cutting plane algo-
rithm, where �B is maximized subject to some stabilizing device that enforces the
locality properties of the iterates [25,29] and also, usually, addresses the unbounded-
ness problem. In our implementation, we have chosen the “standard” stabilizing device,
i.e., the direction is selected via the following quadratic problem (QP):

�B(!) = max
d

{
�B(d)− 1

2ti
||d||2

}
; (26)

where ti ¿ 0 is called the trust region parameter. Problem (26) always attains a
(unique) "nite solution di that is used as the next direction with constant stepsize
1. However, ti may also be interpreted as a stepsize. Indeed, the quadratic dual of (26)
is

min
!¿0




ti

2

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j∈B

gi!i

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+
∑
j∈B

�j!j

∣∣∣∣∣∣
∑
j∈B

!j = 1


 (27)

and di = tizi, where zi =
∑

j∈B gj!i
j and ! i is the optimal solution of (27). Hence, the

new trial point is found along direction zi, a convex combination of the previously
obtained subgradients using ti as a prede"nite stepsize.

Our bundle method requires the solution of (27) at each iteration in order to compute
the next trial point. Since this can easily become the computational bottleneck of the
approach, especially as the number of variables grows, specialized QP codes [12] are
instrumental in order to obtain an e/cient implementation. This is especially true in
the constrained case: in fact, in order to ensure the feasibility of the next current point,
the constraints d¿− U!i must be added to (26), possibly making it harder to solve.

One very important feature that the QP solver must possess is to extensively support
reoptimization, in particular by allowing the on-line creation and destruction of vari-
ables. This so-called variable generation strategy has already been shown critical in
order to keep low the cost of solving the QP when applied to a Lagrangian relaxation
approach for MMCF problems [15]. The importance of this technique is con"rmed in
the present setting, as the results presented in Section 4 clearly show.

Another possibility for reducing the cost of solving the QP is to keep small the
size of the bundle. Usually, subgradients are discarded after having been “inactive”
(i.e., with !i

j = 0) for a "xed number of consecutive iterations. Quite “conservative”
rules work best: after being inactive for 20 iterations, an old subgradient is unlikely to
turn up useful again, but selecting much smaller values often deprives the algorithm
of potentially still useful information, deteriorating its speed of convergence. It is also
possible to "x the bundle to a maximum size (down to two): this can be done without
impairing convergence provided that the aggregated subgradient zi (and its aggre-
gated linearization error %i =

∑
j∈B �j!i

j) is added to the bundle each time “active”
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subgradients are eliminated. “Aggressive” aggregation, corresponding to a very limited
bundle size, usually leads to poorer performances in terms of convergence, but it may
signi"cantly reduce the overall cost of the algorithm, both in time and memory, up to
making it comparable with that of the subgradient method. This is illustrated by the
computational results described in Section 4.

The choice of the trust region parameter ti, that may well be regarded as the choice
of the stepsize, is potentially critical for the performance of the bundle algorithm. It
is also intimately tied to the choice between moving the current point U!i to the trial
point !i, called a serious step or SS, or leaving it unchanged, called a null step or
NS. Typically, a SS is performed when �(!i) “su/ciently improves” over �( U!i), that
is �(!i)−�( U!i)¿m1�B(di) for some "xed parameter 06m1 ¡ 1. The usual value for
m1 is 0.1 although, rarely, m1 = 0 happens to work slightly better. Note that �B(di) is
the increase predicted by the cutting plane model for a movement to !i: hence, a SS
is performed when �B predicts the behavior of the actual function � “well enough”.
On the other hand, a NS is performed when �B is a “poor” model of �. In this case,
however, new information (gi; �i) is gathered that will “re"ne” �B as a model of � in
the current point !i, hopefully leading to a better di+1.

The bundle algorithm will work with ti "xed to any "nite value throughout all the
execution. However, a too small ti would make it perform short steps, each yielding
little improvement, while a too large ti will make it perform too many NS between
two consecutive SS. Therefore, increasing ti after a SS or decreasing it after a NS ap-
pears to be a sensible choice. In the former case, heuristics have been developed [13]
that approximate the restriction of � along di with a quadratic function and choose
ti as its maximizer (provided that it is larger than ti, which turns out to be the case
only when the slope of � in !i is positive). In the latter case, a typical check in-
volves the size of �i and that of the aggregated linearization error %i: the rationale
for this is that �i is a sort of “measure of accuracy” of gi as "rst-order informa-
tion about � in U!i, so that gi can be believed to carry “accurate” information only
if �i6m2%i for some "xed parameter m2 ¿ 0. Otherwise, a ti decrease is preferred,
in the hope that �B be a better model of � “nearer” to the current point. The ac-
tual value of ti+1 is selected via a heuristic rule similar to the one for the increasing
case.

The value usually suggested for m2 is 0.9 [34]. This appears to be a sensible choice,
because zi itself has just shown to be “inaccurate”, so that “better” information should
be required. However, in our experience, such a value invariably leads to a sequence
of ti reductions that, in the long run, seriously slows down the overall convergence, a
phenomenon commonly referred to as tailo= e=ect. Higher settings, such as m2 = 3:0,
prevent ti from changing during almost all the run and have proved to be quite e3ective
in preventing tailo3 e3ects. However, a correct choice of the initial value t0 could
then become important, although the heuristics are usually capable of correcting wrong
choices of t0. A good value for t0 depends on the “scaling” of � and can be usually
guessed by observing the run of just one instance in a class and choosing the order of
magnitude of the ti produced on average by the heuristics. Furthermore, this kind of
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“scaling” information is also useful for the appropriate setting of the stopping criterion,
to be discussed shortly.

To counter the tailo3 e3ect, more sophisticated self-adjusting rules for choosing ti,
called long-term t-strategies, have been developed in [13]. Although their detailed de-
scription is outside the scope of the present work, we brieKy recall their ingredients.
Long-term t-strategies are based on the idea that �B(di) quanti"es the maximum im-
provement that can be expected by the next step, and this quantity is increasing with ti.
Hence, by guessing what a “reasonable improvement” is, it is possible either to increase
ti (hard long-term t-strategy) or to inhibit its decrease (soft long-term t-strategy) if
it turns out to produce too small values of �B(di). Obviously, the main issue is then
how the “reasonable improvement” estimate may be obtained. In our implementation,
we de"ne an initial target and allow it to decrease only when the stopping criterion of
the algorithm is satis"ed for that target.

Given a required relative accuracy  , the stopping criterion of our bundle algorithm
is t∗||zi||2 + %i6 �( U!i), where t∗ is a user-provided parameter. It is easy to see that
any stopping criterion for a bundle algorithm should require both ||zi|| and %i to be
“small”. In the literature, it is suggested to test them against two separate thresholds.
However, "guring out the numerical value to be used as a threshold for ||zi|| is not
easy. Using the parameter t∗ is more convenient, since it is in the same “units of
measure” than ti. In fact, a good choice of t∗ is usually just one order of magnitude
larger than a well-chosen t0: this reduces the “critical” parameters to be sought for
by one, and almost always provides solutions that are within the required precision
(as long as the bundle is given time enough to converge). Furthermore, this form of
stopping criterion is critical for implementing the long-term t-strategies.

An important characteristic of the bundle is that, unlike the subgradient, its stopping
criterion is e=ective: indeed, on “easy” instances the bundle usually reaches convergence
before the maximum iteration limit is exceeded. This does not mean that the bundle
stops as soon as a good enough solution has been found: “certifying” the optimality
(that is, "nding a zi of small enough norm) can be costly. Still, in some cases, a bundle
method may require signi"cantly less running time than a subgradient method, simply
because it is able to stop much earlier.

4. Computational results

The combination of a particular Lagrangian dual problem – resulting from one of
the shortest path or knapsack relaxations of Section 2 – and of a nondi3erentiable
optimization method – subgradient or bundle – together with a choice of implemen-
tation criteria (Section 3), yields many relaxation methods, each one with possibly
signi"cantly di3erent behavior and performance. These characteristics have "rst to be
quali"ed prior to any rigorous comparison.

The computational experiments we performed were thus guided by two objectives:
(1) to determine a promising set of parameters and rules for each relaxation method and
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for di3erent classes of instances (the calibration phase); (2) to compare the relaxation
methods, as well as a number of other well-known bounding procedures (e.g., linear
programming relaxations), by analyzing their performances with respect to various
problem characteristics.

In order to achieve these objectives, we have run our tests on 196 problem instances
(also used in [8] to test a tabu search procedure for the same problem) obtained
from a network generator similar to the one described in [17,18]. When provided
with target values for |N |; |A|, and |K |, this generator creates arcs by connecting two
randomly selected nodes (no parallel arcs are allowed). It proceeds similarly to create
commodities. Costs, capacities, and demands are then generated, uniformly distributed
over userprovided intervals. Capacities and costs can then be scaled to obtain networks
with various degrees of capacity tightness and relative importance of "xed costs. Two
ratios are used for this purpose: the capacity ratio C = |A|T=∑(i; j)∈A uij and the 8xed
cost ratio F = |K |∑(i; j)∈A fij=T

∑
k∈K

∑
(i; j)∈A ck

ij, where T =
∑

k∈K dk . Capacities and
"xed costs are adjusted so that these ratios come close to user-provided values. In
general, when C approaches 1, the network is lightly capacitated and becomes more
congested as C increases. When F is close to 0, the "xed costs are low compared to
the transportation costs, while their relative importance increases with F .

The instances are divided into three classes. Class I consists of instances with many
commodities (signi"cantly more than the number of nodes), while Class II is made
of instances with few commodities (usually less than the number of nodes). Class
III instances have been speci"cally generated to make problem characteristic versus
performance analyses easier. They are divided into two subclasses, III-A and III-B,
corresponding to 10-node and 20-node problem instances, respectively. Nine networks
are generated in each subclass, by combining three arc-densities, roughly 25%, 50%
and 75%, with three commodity-densities, roughly 10%, 25% and 50% (the density is
the ratio with respect to |N ||N − 1|). For each of these nine networks, nine problem
instances are created by combining three values of F – 0:01; 0:05, and 0.1 – with three
values of C: 1, 2, and 8. Several problem instances were also created for each network
in classes I and II to represent various F and C ratio values. Table 1 summarizes the
characteristics of the 196 problem instances in the three classes according to problem

Table 1
Classi"cation of instances according to problem dimension

Class I (31) Class II (12) Class III-A (72) Class III-B (81)

20,230,40 (3) 25,100,10 (3) 10,35,10 (6) 20,120,40 (9)
20,230,200 (4) 25,100,30 (3) 10,35,25 (6) 20,120,100 (9)
20,300,40 (4) 100,400,10 (3) 10,35,50 (6) 20,120,200 (9)
20,300,200 (4) 100,400,30 (3) 10,60,10 (9) 20,220,40 (9)
30,520,100 (4) 10,60,25 (9) 20,220,100 (9)
30,520,400 (4) 10,60,50 (9) 20,220,200 (9)
30,700,100 (4) 10,85,10 (9) 20,320,40 (9)
30,700,400 (4) 10,85,25 (9) 20,320,100 (9)

10,85,50 (9) 20,320,200 (9)
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dimension represented by a triplet |N |; |A|; and |K |. The number of instances is dis-
played between parentheses (infeasible problem instances have been discarded). The
test problems and the generator used for class III can be obtained from the authors.

The next subsection presents the calibration results of each relaxation method on the
three classes of instances, while the second is dedicated to comparative analyses. Two
performance measures are used:
• The GAP (Z∗ − Z)=Z∗ between the lower bound Z obtained by the given method

and the best available lower bound Z∗. This last corresponds to the optimal value
of the strong linear programming relaxation except for some di/cult problem in-
stances for which technological limitations (indicated in Section 4.2) do not permit
its computation.
• The CPU time on a Sun Ultra 1=140 workstation (4.66 SPECint95, 7.90 SPECfp95)

with 64 MB of RAM memory. The code is programmed in C++ and compiled with
the CC compiler using the -O option.

4.1. Calibration

The methods were "ne-tuned for each class independently through the analysis of a
large number of strategies and parameter sets. However, the available space does not
allow a detailed presentation of the results. In the following, we summarize the main
"ndings and present a number of aggregated performance measures that support them.
A larger set of analyses and aggregated measures can be found in [7] (the complete
experimental results can be obtained from the authors). The aggregated measures are
obtained through averaging the performance measures over all instances in a class. Note
that, although averaging over such large sets of instances with so varied characteristics
might appear coarse, it proves remarkably reliable, as more detailed instance-by-instance
analyses have revealed similar results and tendencies, whatever method is used. Also
note that the maximum number of iterations for both the subgradient and the bundle
methods was "xed to 500. Such a number allows both methods to come reasonably
close to the optimal value for most instances, although it is important to mention that it
could have been signi"cantly diminished for the bundle, as it usually converges much
more rapidly than the subgradient (see Section 4.2).

4.1.1. Shortest path–bundle method
The development of a bundle-based method for the shortest path relaxation requires

the careful management of the bundle size due to the large number of multipliers
(|A| + |A||K |) generated by this relaxation. Indeed, in the course of our experiments,
it became rapidly clear that discarding “inactive” subgradients is not enough for an
e/cient resolution, and that one is also required to "x the maximum size of the
bundle to a relatively small value. When using a “conservative” value for the maximum
bundle size (such as 100), all the RAM memory was quickly consumed for large-scale
problem instances. This resulted in the need to access secondary memory devices,
yielding prohibitive computation times.
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An interesting question then arises: what is the tradeo3 between numerical accu-
racy and computation time when the maximum bundle size varies? Other interesting
issues that we aim to address with our experiments concern the impact on solution
quality and computation performance resulting from the utilization of: (1) the pro-
jected shortest path relaxation rather than the “ordinary” one; (2) the variable genera-
tion strategy (e.g., on-line creation and destruction of multipliers); (3) the long-term
t-strategies.

For all variants of the shortest path–bundle strategy that we tested, the parameters of
the bundle method, such as m1; m2 and, especially, t0, have been calibrated extensively
for each class of instances. Typically, m1 =0:1; m2 =3:0 (m2 =0:9 when the long term
t-strategy is used), and t0 = 1 is a very good setting for all instances, even though
t0=0:1 leads to slightly better results for problems in class I. It is noteworthy, however,
that other “reasonable” settings of t0 (such as t0 = 0:01 or 10) lead to very similar
results: this is a clear demonstration of the robustness of the bundle method.

Several interesting conclusions emerged from our calibration experiments. First, note
that 400-commodity instances in class I cannot be solved when the bundle size is
"xed to 100 because the RAM memory limitation is quickly exceeded (the same oc-
curs when a straightforward simplex-based approach is used to solve the strong linear
programming relaxation, as explained in Section 4.2). Even some 200-commodity in-
stances require the use of secondary memory devices. All instances can be treated,
however, when the maximum bundle size is set to 10, with no signi"cant impact on
convergence: the gaps slightly increase on average, but remain in the same order of
magnitude (10−4 for problems in classes I and II, and 10−3 for class III instances).
The CPU times, however, are reduced signi"cantly (by 37%, on average).

Another important conclusion concerns the projected version of the shortest path
relaxation, which signi"cantly and consistently improves over the “ordinary” version.
For a slightly smaller computational e3ort, the projected version decreases the gap by
an order of magnitude, from 10−3 to 10−4 for problems in classes I and II, and from
10−2 to 10−3 for class III instances. This behavior was constantly con"rmed when
other parameter settings were selected, for bundle and subgradient methods alike.

The comparisons also show the computational bene"ts of the variable generation
strategy: for basically the same accuracy, CPU times are reduced on average by 64%,
47%, and 62% for problems in classes I, II, and III, respectively. Finally, one may
observe that the hard long-term t-strategy is slightly superior to the soft variant and
generally fastens convergence (other computational evidence is given in [13]). There-
fore, the most promising variant of the shortest path–bundle method that we selected
for further comparisons makes use of the projected version with a maximum bundle
size of 10, plus the variable generation strategy and the hard long-term t-strategy.

4.1.2. Shortest path–subgradient method
We have already indicated that the projected shortest path relaxation is much more

e3ective than the ordinary one. Hence, three main issues remain when designing
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subgradient-based methods for the shortest path relaxation:
• The selection of the rule for computing the direction, Crowder or Camerini–Fratta–

Ma/oli, and the adjustment of the corresponding parameter, ! or #.
• The adjustment of the stepsize, in particular:

1. the setting of $0;
2. the adjustment of $i; after testing several settings, one of the most promising we

found is to halve $i after 10 consecutive iterations without improvement, with $i

kept larger than some minimum, "xed to 10−3; this setting was adopted for the
remaining tests;

3. the determination of the estimate U�
i
; we have tried an upper bound provided by

a tabu search heuristic [8], but the rough estimate 2×�i
∗ was preferable in most

cases.
• The choice between projecting the direction onto the nonnegative orthant (as in [28])

or not.
One of the biggest surprises we encountered when running the experiments was

the performance of the modi"ed Camerini–Fratta–Ma/oli rule. It is not tested in [5],
but only mentioned as a promising alternative to formula (21). To the best of our
knowledge, it has been very seldom used since. In our experiments, it completely
outperformed the Camerini–Fratta–Ma/oli rule with the suggested setting # = 1:5 [5].
It is also competitive with Crowder rule, as it displays very similar gap and CPU
results, with a slight edge for the modi"ed Camerini–Fratta–Ma/oli rule. Note that
this conclusion is true whether the direction is projected or not.

Another important conclusion from our calibration phase concerns the projection of
the direction. It appears that for both Crowder and modi"ed Camerini–Fratta–Ma/oli
rules, projecting the direction improves the gap by an order of magnitude, for essentially
the same computational e3ort: from an order to 10−3 to 10−4 for problems in classes
I and II, and from 10−2 to 10−3 for class III instances. It is interesting to note that
the two options, projecting the direction or not, require di3erent “optimal” settings of
the parameters.

We expected to run into the well-known “jamming” phenomenon: the method is
unable to improve on the value of the objective function and, consequently, the pa-
rameter $i is continually decreased. The result is a series of very short steps, which
makes the method “jam” far away from an optimal solution. Indeed, most variants
we tested su3er to some degree from this problem and display a similar tendency to
“diverge”. In fact, the experiments illustrated what can happen when a subgradient
method suggested in the literature is run without carefully adjusting the parameters.
For example, using the Camerini–Fratta–Ma/oli rule with the suggested #=1:5, with-
out projecting the direction and calibrating $0 (1.0 was determined to be the most
promising for all classes), produced average gaps of two orders of magnitude larger
than those obtained by the best "netuned variants. This is a clear demonstration of the
lack of robustness of the subgradient method: “good” settings can be found, but most
“reasonable” settings one might try are unbearably “bad”. Following our experiments,
we selected the following variant of the shortest path–subgradient method for further
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comparisons: use the modi"ed Camerini–Fratta–Ma/oli rule by projecting the direction
and $0 = 1:0.

4.1.3. Knapsack–bundle method
Compared to the shortest path relaxation, the knapsack relaxation has a relatively

small number of multipliers (|N ||K |). Consequently, more Kexibility is allowed in the
development of a bundle method for the optimization of its Lagrangian dual. In partic-
ular, the variable generation strategy is generally slightly inferior in this case: it slows
down convergence, as usual, but also sometimes increases computation time. Keeping
low the maximum bundle size is not necessary either. However, it is still interesting to
qualify the tradeo3 between accuracy and computation time when the maximum bun-
dle size varies: a small maximum bundle size reduces the burden of solving the QP at
each iteration, which might signi"cantly improve the e/ciency, at the cost of losing
some e3ectiveness. Another interesting issue is the e3ect of the long-term t-strategies,
shown to be marginally superior for the shortest path-bundle method.

In light of these remarks, we experimented with bundle sizes of 100 and 10, imple-
menting or not the hard long-term t-strategy (again shown to be superior to the soft
one). The parameters of the bundle method were calibrated for each class of problem
instances. It turned out that the values selected as the most promising were the same
as in the case of the shortest path–bundle method. Furthermore, other “reasonable”
settings displayed very similar results. This is another indication of the robustness of
the bundle method.

The size of the bundle does not appear to inKuence signi"cantly the quality of the
solution for problems in classes I and III where the average gaps (in the order of
10−4 and 10−3, respectively) are almost identical for all variants. The di3erence is
only a little bit more signi"cant for class II problems: the average gaps vary from
approximately 8 × 10−4 to 1 × 10−3 when the maximum bundle size is decreased
from 100 to 10. Overall, these results show that the method is capable of generating
high-quality solutions even when the maximum bundle size is signi"cantly reduced. On
the other hand, computation times are cut by a factor of 2 for problems in classes I and
III, and almost 4 for class II instances. Similarly to the shortest path–bundle method,
the long-term t-strategy slightly improves the performances of the bundle method. As
it represents a fair balance between numerical precision and computation time, we
selected for further comparisons a strategy with a low maximum bundle size (10),
using the hard long-term t-strategy.

4.1.4. Knapsack–subgradient method
In light of previous experience, making the subgradient method converge when ap-

plied to the knapsack relaxation appeared to be a di/cult task. Indeed, the authors
presented in [17] disappointing results for the knapsack–subgradient method: for most
instances, the method was “diverging” to the point that the bound it computed was
worse than the weak linear programming bound. In [26], better results are obtained
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with a similar procedure which uses a variant of Crowder rule for updating the di-
rection. Following our present computational experiments, we can claim that the fun-
damental di3erence between the procedures described in [17,26] lies in the way the
multipliers are initialized: in [17], they are set to 0, while in [26], they assume the
values of the node potentials obtained after solving |K | shortest path problems with
costs ck

ij ∀(i; j) ∈ A; k ∈ K (actually, a convex combination of 0 and the vector of node
potentials is used). In fact, prior to the publication of [17], a similar warmstart proce-
dure was tested but no improvement of the bound was observed. Based on our latest
computational experiments, we can attribute this negative result to a bad adjustment of
the parameters, especially $0.

For the present tests, we have used a warmstart procedure where the multipliers are
initialized to the values of the node potentials resulting from the solution of |K | shortest
path problems with costs ck

ij +fij=uij ∀(i; j) ∈ A; k ∈ K (a choice experimentally shown
better than the above one). Then, by carefully adjusting the parameters, we were able
to obtain very accurate results. Without this warmstart procedure, however, we were
unable to make the method converge, irrespective of the parameter setting used (thus
con"rming the bad results reported in [17]). Note that the same warmstart procedure
was tested for the knapsack–bundle method, but then shown to be inferior to the
straightforward initialization of the multipliers. A similar warmstart method, based on
solving continuous knapsack problems, was also tested for the shortest path relaxation:
it did not improve neither the bundle nor the subgradient.

The results from this calibration phase support our previous conclusions about the
subgradient method: (1) the Camerini–Fratta–Ma/oli rule with # = 1:5 is consistently
outperformed by other rules; (2) the modi"ed Camerini–Fratta–Ma/oli and Crowder
rules are both competitive, with a slight edge for the former. The variant selected for
further comparisons thus makes use of the modi"ed Camerini–Fratta–Ma/oli rule with
$0 adjusted for each class: $0 = 1:0 for class I, $0 = 0:7 for class II, and $0 = 0:3 for
class III. The remaining issues, i.e., the adjustment of $i and the determination of the
estimate U�

i
, are settled in the same way as for the shortest path–subgradient method.

It is important to point out that the relatively good results we obtained for the
knapsack–subgradient method (average gaps of the order of 10−4 for class I and 10−3

for the others) are due to a very careful adjustment of $0 for each strategy and class
of problems. Values di3erent than the ones mentioned above might lead to disastrous
results. For example, when using the modi"ed Camerini–Fratta–Ma/oli rule for class
III, if $0 = 0:7 is used instead of $0 = 0:3, an average gap of the order of 10−1 is
obtained. This further illustrates the lack of robustness of the subgradient method.

4.2. Comparison

In this section, we compare the most promising variants of the four relaxation meth-
ods identi"ed in Section 4.1, as well as three other bounding procedures. We charac-
terize the performances of the methods with respect to problem dimension and rela-
tive importance of capacities and "xed costs (measured by the F and C ratios). The
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bounding procedures are:
• CPXW : It solves the weak linear programming relaxation formulated as an MMCF

problem (with costs ck
ij+fij=uij ∀(i; j) ∈ A; k ∈ K), by a well-known and competitive

simplex solver, CPLEX (version 4.0). It uses the “netopt” option, which provides
a good starting basis by solving the minimum cost network Kow problem resulting
from the relaxation of the capacity constraints, and then switches to the dual simplex
method.
• WB: It solves the Lagrangian dual of the projected weak shortest path relaxation

(with �=0) by the same bundle method used for other relaxations. As explained in
Section 2, the optimal value of this Lagrangian dual gives the same bound as the
weak linear programming relaxation.
• CPXS: It solves the strong linear programming relaxation with CPLEX using the “ne-

topt” option. It is undoubtedly a very straightforward approach (e.g., a cutting-plane
procedure based on relaxing the forcing constraints and introducing them gradually
in the formulation would certainly be more e/cient). However, it illustrates the
di/culty of solving these large-scale formulations by using standard methods, and
highlights the degeneracy issue faced by all simplex-based methods.
• SS: The most promising variant of the shortest path–subgradient method identi"ed

in the calibration phase (Section 4.1).
• SB: The most promising variant of the shortest path–bundle method identi"ed in the

calibration phase (Section 4.1).
• KS: The most promising variant of the knapsack–subgradient method identi"ed in

the calibration phase (Section 4.1).
• KB: The most promising variant of the knapsack–bundle method identi"ed in the

calibration phase (Section 4.1).
Tables 2–5 display the results obtained by these methods when applied to all problem

instances in the three classes. Problems are grouped according to their dimension, the
number of instances in each group being written between parentheses. The "rst "gure
indicates the average GAP (an “X” signals that the corresponding method was unable
to solve the instances in the group) with respect to the best value obtained, while the
"gure below shows the average CPU time.

These results demonstrate that the weak bound is really weak and certainly not viable
as a basis for branch-and-bound methods, since it displays an average gap of roughly
20% with respect to the strong bound. However, it is interesting to note that method
WB converges exactly (within a tolerance of  = 10−6) to the weak bound for all
instances and it is up to an order of magnitude faster than a standard simplex-based
method for large-scale MMCF problems (other computational evidence is given in
[15]). Since the bundle method is capable of extracting an optimal primal solution
once it has converged [15], this is especially appealing in the context of designing
heuristics for our problem, since "nding a feasible solution amounts to solving an
MMCF problem.

As the number of commodities increases, the resources – time and memory – required
by method CPXS become prohibitive, to the point that 400-commodity instances cannot
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Table 2
Method comparisons with respect to problem dimension – Class I

Problems CPXW WB CPXS SS SB KS KB

20,230,40 6.9e-2 6.9e-2 0.0 5.9e-5 7.0e-5 1.2e-4 6.7e-5
(3) 0.5 0.1 4.9 9.9 10.7 2.5 3.7
20,230,200 2.4e-1 2.4e-1 0.0 1.8e-3 6.7e-4 9.7e-4 1.4e-3
(4) 2.7 0.3 2448.3 56.6 63.6 24.9 29.7
20,300,40 8.8e-2 8.8e-2 0.0 2.4e-4 7.9e-5 2.0e-4 7.7e-5
(4) 0.7 0.1 7.2 12.7 11.7 3.2 3.7
20,300,200 1.9e-1 1.9e-1 0.0 1.1e-3 4.0e-4 6.0e-4 6.1e-4
(4) 4.6 0.5 10298.1 70.8 74.6 29.0 32.1
30,520,100 1.7e-1 1.7e-1 0.0 8.8e-4 9.3e-4 1.0e-3 9.5e-4
(4) 4.6 0.7 1086.1 62.9 64.1 17.8 21.1
30,520,100 1.4e-1 1.4e-1 X 6.6e-4 1.9e-5 1.1e-4 3.8e-4
(4) 63.8 6.5 11112.8 264.8 257.6 139.9 166.1
30,700,100 1.6e-1 1.6e-1 0.0 9.2e-4 5.2e-4 7.3e-4 8.8e-4
(4) 5.1 0.9 857.5 82.3 83.1 22.5 24.9
30,700,400 1.6e-1 1.6e-1 X 6.5e-4 0.0 1.5e-4 4.0e-4
(4) 76.9 9.3 11700.6 343.8 334.7 179.8 199.3
Average 1.6e-1 1.6e-1 0.0 8.0e-4 3.4e-4 5.0e-4 6.1e-4
(31) 20.5 2.4 4840.5 116.3 115.8 54.1 61.9

Table 3
Method comparisons with respect to problem dimension – Class II

Problems CPXW WB CPXS SS SB KS KB

25,100,10 2.3e-1 2.3e-1 0.0 5.3e-4 1.8e-4 7.6e-4 2.7e-4
(3) 0.1 0.0 1.3 1.1 1.0 0.6 0.8
25,100,30 2.2e-1 2.2e-1 0.0 4.0e-4 1.4e-4 9.8e-4 5.5e-4
(3) 0.6 0.2 11.3 3.0 3.5 1.2 2.3
100,400,10 2.8e-1 2.8e-1 0.0 1.1e-3 6.7e-4 1.6e-3 1.3e-3
(3) 0.3 0.1 35.9 4.2 4.8 1.7 3.0
100,400,30 2.9e-1 2.9e-1 0.0 1.0e-3 1.1e-3 1.9e-3 2.5e-3
(3) 5.9 2.3 351.9 14.3 16.7 4.5 9.1
Average 2.5e-1 2.5e-1 0.0 7.6e-4 5.1e-4 1.3e-3 1.2e-3
(12) 1.7 0.7 100.1 5.7 6.4 2.0 3.8

even be solved due to lack of memory. In comparison, our implementations of the
relaxation methods are very e/cient, especially on large-scale problem instances, where
they run in a fraction of the time taken by CPXS, provided the size of the bundle is
controlled (as mentioned above, if a maximum bundle size of 100 is used, the shortest
path–bundle method fall into the same memory problems as CPXS).

The knapsack-based methods, due to the simplicity of the Lagrangian subproblem, are
approximately 2–3 times faster than the shortest path-based methods. Note, however,
that method SB is remarkably e3ective, as it displays the best average gaps over all
classes, except class III-B. The very good performances of procedure KS came as a
surprise: it is the fastest and its average gaps are very comparable to those obtained by
method KB. It should be pointed out, however, that strategy KB could o3er a better
performance if less iterations (say 100) were allowed and the maximum bundle size was
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Table 4
Method comparisons with respect to problem dimension – Class III-A

Problems CPXW WB CPXS SS SB KS KB

10; 35; 10 9.7e-2 9.7e-2 0.0 5.6e-4 0.0 2.2e-4 1.3e-5
(6) 0.0 0.0 0.1 0.6 0.3 0.3 0.3
10; 35; 25 1.6e-1 1.6e-1 0.0 1.6e-4 6.0e-5 3.3e-4 1.3e-4
(6) 0.1 0.0 0.4 1.1 1.0 0.5 0.9
10; 35; 50 1.4e-1 1.4e-1 0.0 3.4e-4 1.2e-4 9.4e-4 5.7e-4
(6) 0.2 0.1 2.0 2.1 2.3 0.9 1.6
10; 60; 10 1.7e-1 1.7e-1 0.0 7.4e-4 3.5e-5 1.9e-4 5.1e-5
(9) 0.0 0.0 0.2 0.8 0.6 0.3 0.4
10; 60; 25 1.3e-1 1.3e-1 0.0 8.3e-4 5.3e-4 8.5e-4 5.3e-4
(9) 0.1 0.1 1.3 1.6 1.6 0.7 1.1
10; 60; 50 1.7e-1 1.7e-1 0.0 1.1e-3 1.1e-3 1.7e-3 1.2e-3
(9) 0.3 0.1 6.5 3.1 3.5 1.2 2.0
10; 85; 10 1.3e-1 1.3e-1 0.0 4.1e-4 2.0e-5 1.4e-4 2.8e-5
(9) 0.0 0.0 0.2 0.9 0.7 0.4 0.4
10; 85; 25 1.6e-1 1.6e-1 0.0 7.1e-4 1.7e-4 3.7e-4 1.1e-4
(9) 0.1 0.1 1.6 2.1 1.7 0.8 1.0
10; 85; 50 2.0e-1 2.0e-1 0.0 7.6e-4 4.2e-4 5.1e-4 3.2e-4
(9) 0.3 0.1 10.2 4.1 4.6 1.5 2.2
Average 1.5e-1 1.5e-1 0.0 6.6e-4 2.9e-4 5.9e-4 3.4e-4
(72) 0.1 0.1 2.7 1.9 2.0 0.8 1.1

Table 5
Method comparisons with respect to problem dimension – Class III-B

Problems CPXW WB CPXS SS SB KS KB

20; 120; 40 1.8e-1 1.8e-1 0.0 4.6e-3 5.3e-3 2.1e-3 1.5e-3
(9) 1.0 0.4 24.3 4.8 5.6 1.7 2.9
20; 120; 100 1.8e-1 1.8e-1 0.0 1.1e-3 1.3e-3 2.3e-3 1.5e-3
(9) 8.0 1.6 217.2 12.9 15.1 5.1 8.5
20; 120; 200 1.6e-1 1.6e-1 0.0 6.2e-3 9.9e-4 1.5e-3 1.7e-3
(9) 35.8 4.5 1164.6 26.2 30.3 13.9 22.3
20; 220; 40 2.7e-1 2.7e-1 0.0 1.7e-3 1.3e-3 1.3e-3 1.0e-3
(9) 0.5 0.1 63.1 9.3 11.3 2.5 3.7
20; 220; 100 2.5e-1 2.5e-1 0.0 9.3e-3 8.8e-3 8.7e-3 8.8e-3
(9) 3.1 0.7 558.1 24.4 28.1 7.5 10.8
20; 220; 200 2.2e-1 2.2e-1 0.0 1.3e-3 8.7e-4 1.3e-3 1.4e-3
(9) 40.5 6.1 3572.9 50.3 55.5 19.7 27.3
20; 320; 40 3.0e-1 3.0e-1 0.0 8.3e-3 1.0e-2 2.1e-3 2.8e-3
(9) 0.6 0.1 102.8 13.4 15.9 3.3 4.6
20; 320; 100 2.8e-1 2.8e-1 0.0 2.5e-3 2.2e-3 1.4e-3 1.4e-3
(9) 2.2 0.3 999.5 36.8 41.3 10.6 14.3
20; 320; 200 2.5e-1 2.5e-1 0.0 2.0e-3 1.1e-3 1.0e-3 1.1e-3
(9) 12.0 2.7 5789.3 75.8 79.6 26.0 35.6
Average 2.3e-1 2.3e-1 0.0 4.1e-3 3.6e-3 2.4e-3 2.4e-3
(81) 11.5 1.9 1388.0 28.2 31.4 10.0 14.5
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increased (say to 100). In fact, for most instances, the bundle method achieves most
progress in the "rst iterations, while the last iterations only bring a minor contribution
in terms of the bound quality. The subgradient method has a signi"cantly di3erent
behavior, as it converges much more slowly (this point is further substantiated below).

The relative gaps displayed in these tables point to the conclusion that, once properly
calibrated for each method and problem class, subgradient-based methods o3er similar
performances in terms of solution quality over the whole range of problem dimen-
sions. This observation con"rms that reported by Gondran and Minoux [23] relative to
implementations using the settings proposed in [24]. Our results also show, however,
that the same apparent insensitiveness to problem dimension characterizes bundle-based
implementations as well (further theoretical and experimental investigations into this
matter are required but fall outside the scope of the present paper).

We have also analyzed the performances of the seven methods with respect to the
importance of "xed costs and capacities. The results (detailed in [7]) show that the
gap between the weak and the strong bounds increases when "xed costs get higher
and capacities less tight. The weak bound can, in general, be easily computed, but
it is even more easier to compute for instances with large F and small C. This is
true for both CPXW and WB methods, but WB is signi"cantly faster. For the CPXS
procedure, the CPU time increases not only with the importance of the "xed costs, but
also with the tightness of the capacities. Our relaxation methods generally exhibit larger
gaps when "xed costs are more important. No clear tendency emerges however with
respect to the capacity ratio. Overall, these results demonstrate that the performances
of our implementations of Lagrangian relaxation methods are much less dependent on
the relative importance of "xed costs and capacities than simplex-based methods.

The previous analyses allow to qualify the performances of the various methods
with respect to di3erent problem characteristics and to discriminate between relaxation
and simplex-based approaches. They may be misleading, however, in suggesting that
the four relaxation methods are more or less “equivalent”: for almost all instances,
their relative accuracy is similar (with an edge for method SB) and their computation
times improve signi"cantly over a straightforward simplex implementation (method KS
being the fastest). However, these results are obtained with a "xed maximum number
of iterations of 500 for all methods, a maximum that is almost always attained: hence,
they give no indication of the speed of convergence. We illustrate the performance of
the methods with respect to this characteristic by using two representative instances:
one in class I of dimension 20,300,200 and one in class II of dimension 100,400,30.
For each problem instance, Figs. 1 and 2 show the evolution of the bound with time
(in CPU seconds) for the four relaxation strategies, as well as for method CPXS (each
dot in the "gure corresponds to an iteration of the method). For the "rst instance, it
is clear that the two bundle methods converge faster than the subgradient approaches,
the fastest being SB with KB a close second, while SS is by far the slowest of the
four. For the second instance, the hierarchy is about the same, but this time the two
knapsack-based relaxations are closer to each other. The "gures also highlight the
degeneracy problem faced by method CPXS: for both instances, the objective remains
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Fig. 1. Comparison of the speed of convergence for one problem in class I.

Fig. 2. Comparison of the speed of convergence for one problem in class II.
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the same for several consecutive iterations. Consequently, the method converges very
slowly; the "rst instance took 1742 s to reach the optimal value, the second one 408 s.

5. Conclusion

We have presented and analyzed the results of a comprehensive study of Lagrangian-
based bounding methods for capacitated "xed-charge network design problems. The
relaxation methods di3ered by the dual formulation solved (based on relaxing the
Kow or the forcing constraints), by the nondi3erentiable optimization approach used
(subgradient or bundle), as well as by the choice of a number of important rules
and parameters. Linear programming relaxations, solved by a competitive commercial
simplex code, were also included in our study, in order to correctly characterize the
performances of the various methods. Experimentation has been performed on a large
set of test problems of various characteristics.

The calibration phase has allowed to gain precious insights into the behavior of
each method for the class of instances studied, to single out critical parameters, and
to identify recommended strategies and parameter settings. The experiments have also
allowed to substantiate the fact that, although more complex to implement, bundle
methods appear superior to subgradient approaches: they converge faster and are more
robust relative to di3erent relaxations, problem characteristics, and selection of the
initial parameter values. Note that our codes are based on generic C++ bundle and
subgradient classes that have been used in several projects by di3erent research groups.
Although they are not yet in the public domain, they can be obtained from the second
author for controlled experiments.

As mentioned in Section 3.2, our bundle implementation uses the standard quadratic
“stabilizing” device. Other choices are possible however. For instance, a generalization
of standard bundle methods has been recently proposed [14], which allows the “stabi-
lizing” device to be chosen from a large class of functions. Other methods from the
"eld of nondi3erentiable optimization can also be used in the context of Lagrangian
relaxation, the most notable being the proximal level method [25] and the analytic
center cutting-plane method [22]. In particular, the latter has been used successfully
in two applications closely related to ours: linear and nonlinear MMCF [21,11] and
capacitated lot-sizing [10].

Our study has demonstrated that e3ective lower bounds may be computed e/ciently
for large-scale instances of the capacitated "xed-charge network design problem. In-
deed, in a fraction of the time required by a standard simplex approach to solve the
linear programming relaxation (if it may be solved at all), the methods we presented
attain very high-quality solutions. This should prove of prime importance when optimal
solutions are sought for by branch-and-bound methods.

Several fascinating research avenues are now inviting. One is the integration of strong
valid inequalities into the relaxations. To preserve the structure of the Lagrangian
sub-problems, these valid inequalities could be relaxed in a Lagrangian way, which
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would, however, introduce large quantities of multipliers and subgradients related to
these constraints. Our implementation of the bundle method has two features that allow
an e/cient treatment of such relaxations: (1) the size of the bundle of subgradients
can be limited by the user; (2) it is possible to restrict the direction-"nding subproblem
to the set of multipliers corresponding to violated constraints, which can be revised
dynamically in an e/cient way. Our experiments show indeed that these two fea-
tures were essential to obtain good results for the shortest path relaxation. Another
issue concerns the determination of tight feasible solutions; in particular, bundle-based
Lagrangian heuristics appear promising. Finally, the combination of relaxation methods
and heuristics with reoptimization, variable "xing techniques and branch-and-bound
procedures constitutes the goal of one of our major research trusts.
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